

FIGURE 18
$r=\sin (8 \theta / 5)$

- In Exercise 55 you are asked to prove analytically what we have discovered from the graphs in Figure 19

The remaining parts of Figure 19 show that as c becomes negative, the shapes change in reverse order. In fact, these curves are reflections about the horizontal axis of the corresponding curves with positive c.

10.3 EXERCISES

I-2 Plot the point whose polar coordinates are given. Then find two other pairs of polar coordinates of this point, one with $r>0$ and one with $r<0$.
I. (a) $(2, \pi / 3)$
(b) $(1,-3 \pi / 4)$
(c) $(-1, \pi / 2)$
2. (a) $(1,7 \pi / 4)$
(b) $(-3, \pi / 6)$
(c) $(1,-1)$

3-4 Plot the point whose polar coordinates are given. Then find the Cartesian coordinates of the point.
3. (a) $(1, \pi)$
(b) $(2,-2 \pi / 3)$
(c) $(-2,3 \pi / 4)$
4. (a) $(-\sqrt{2}, 5 \pi / 4)$
(b) $(1,5 \pi / 2)$
(c) $(2,-7 \pi / 6)$

5-6 The Cartesian coordinates of a point are given.
(i) Find polar coordinates (r, θ) of the point, where $r>0$ and $0 \leqslant \theta<2 \pi$.
(ii) Find polar coordinates (r, θ) of the point, where $r<0$ and $0 \leqslant \theta<2 \pi$.
5. (a) $(2,-2)$
(b) $(-1, \sqrt{3})$
6. (a) $(3 \sqrt{3}, 3)$
(b) $(1,-2)$

7-12 Sketch the region in the plane consisting of points whose polar coordinates satisfy the given conditions.
7. $1 \leqslant r \leqslant 2$
8. $r \geqslant 0, \quad \pi / 3 \leqslant \theta \leqslant 2 \pi / 3$
9. $0 \leqslant r<4, \quad-\pi / 2 \leqslant \theta<\pi / 6$
10. $2<r \leqslant 5, \quad 3 \pi / 4<\theta<5 \pi / 4$
II. $2<r<3, \quad 5 \pi / 3 \leqslant \theta \leqslant 7 \pi / 3$
12. $r \geqslant 1, \quad \pi \leqslant \theta \leqslant 2 \pi$
13. Find the distance between the points with polar coordinates $(2, \pi / 3)$ and $(4,2 \pi / 3)$.
14. Find a formula for the distance between the points with polar coordinates $\left(r_{1}, \theta_{1}\right)$ and $\left(r_{2}, \theta_{2}\right)$.

15-20 Identify the curve by finding a Cartesian equation for the curve.
15. $r=2$
16. $r \cos \theta=1$
17. $r=3 \sin \theta$
18. $r=2 \sin \theta+2 \cos \theta$
19. $r=\csc \theta$
20. $r=\tan \theta \sec \theta$

21-26 Find a polar equation for the curve represented by the given Cartesian equation.
21. $x=3$
22. $x^{2}+y^{2}=9$
23. $x=-y^{2}$
24. $x+y=9$
25. $x^{2}+y^{2}=2 c x$
26. $x y=4$

27-28 For each of the described curves, decide if the curve would be more easily given by a polar equation or a Cartesian equation. Then write an equation for the curve.
27. (a) A line through the origin that makes an angle of $\pi / 6$ with the positive x-axis
(b) A vertical line through the point $(3,3)$
28. (a) A circle with radius 5 and center $(2,3)$
(b) A circle centered at the origin with radius 4

29-48 Sketch the curve with the given polar equation.
29. $\theta=-\pi / 6$
30. $r^{2}-3 r+2=0$
31. $r=\sin \theta$
32. $r=-3 \cos \theta$
33. $r=2(1-\sin \theta), \quad \theta \geqslant 0$
34. $r=1-3 \cos \theta$
35. $r=\theta, \quad \theta \geqslant 0$
36. $r=\ln \theta, \theta \geqslant 1$
37. $r=4 \sin 3 \theta$
38. $r=\cos 5 \theta$
39. $r=2 \cos 4 \theta$
40. $r=3 \cos 6 \theta$
41. $r=1-2 \sin \theta$
42. $r=2+\sin \theta$
43. $r^{2}=9 \sin 2 \theta$
44. $r^{2}=\cos 4 \theta$
45. $r=2 \cos (3 \theta / 2)$
46. $r^{2} \theta=1$
47. $r=1+2 \cos 2 \theta$
48. $r=1+2 \cos (\theta / 2)$

49-50 The figure shows the graph of r as a function of θ in Cartesian coordinates. Use it to sketch the corresponding polar curve.
49.

50.

5I. Show that the polar curve $r=4+2 \sec \theta$ (called a conchoid) has the line $x=2$ as a vertical asymptote by showing that $\lim _{r \rightarrow \pm \infty} X=2$. Use this fact to help sketch the conchoid.
52. Show that the curve $r=2-\csc \theta$ (also a conchoid) has the line $y=-1$ as a horizontal asymptote by showing that $\lim _{r \rightarrow \pm \infty} y=-1$. Use this fact to help sketch the conchoid.
53. Show that the curve $r=\sin \theta \tan \theta$ (called a cissoid of Diocles) has the line $x=1$ as a vertical asymptote. Show also that the curve lies entirely within the vertical strip $0 \leqslant x<1$. Use these facts to help sketch the cissoid.
54. Sketch the curve $\left(x^{2}+y^{2}\right)^{3}=4 x^{2} y^{2}$.
55. (a) In Example 11 the graphs suggest that the limaçon $r=1+c \sin \theta$ has an inner loop when $|c|>1$. Prove that this is true, and find the values of θ that correspond to the inner loop.
(b) From Figure 19 it appears that the limaçon loses its dimple when $c=\frac{1}{2}$. Prove this.
56. Match the polar equations with the graphs labeled I-VI. Give reasons for your choices. (Don't use a graphing device.)
(a) $r=\sqrt{\theta}, \quad 0 \leqslant \theta \leqslant 16 \pi$
(b) $r=\theta^{2}, \quad 0 \leqslant \theta \leqslant 16 \pi$
(c) $r=\cos (\theta / 3)$
(d) $r=1+2 \cos \theta$
(e) $r=2+\sin 3 \theta$
(f) $r=1+2 \sin 3 \theta$

57-62 Find the slope of the tangent line to the given polar curve at the point specified by the value of θ.
57. $r=2 \sin \theta, \quad \theta=\pi / 6$
58. $r=2-\sin \theta, \quad \theta=\pi / 3$
59. $r=1 / \theta, \quad \theta=\pi$
60. $r=\cos (\theta / 3), \quad \theta=\pi$
6I. $r=\cos 2 \theta, \quad \theta=\pi / 4$
62. $r=1+2 \cos \theta, \quad \theta=\pi / 3$

63-68 Find the points on the given curve where the tangent line is horizontal or vertical.
63. $r=3 \cos \theta$
64. $r=1-\sin \theta$
65. $r=1+\cos \theta$
66. $r=e^{\theta}$
67. $r=2+\sin \theta$
68. $r^{2}=\sin 2 \theta$
69. Show that the polar equation $r=a \sin \theta+b \cos \theta$, where $a b \neq 0$, represents a circle, and find its center and radius.
70. Show that the curves $r=a \sin \theta$ and $r=a \cos \theta$ intersect at right angles.

711-76 Use a graphing device to graph the polar curve. Choose the parameter interval to make sure that you produce the entire curve.
7. $r=1+2 \sin (\theta / 2) \quad$ (nephroid of Freeth)
72. $r=\sqrt{1-0.8 \sin ^{2} \theta} \quad$ (hippopede)
73. $r=e^{\sin \theta}-2 \cos (4 \theta) \quad$ (butterfly curve)
74. $r=\sin ^{2}(4 \theta)+\cos (4 \theta)$
75. $r=2-5 \sin (\theta / 6)$
76. $r=\cos (\theta / 2)+\cos (\theta / 3)$
77. How are the graphs of $r=1+\sin (\theta-\pi / 6)$ and $r=1+\sin (\theta-\pi / 3)$ related to the graph of $r=1+\sin \theta$? In general, how is the graph of $r=f(\theta-\alpha)$ related to the graph of $r=f(\theta)$?
78. Use a graph to estimate the y-coordinate of the highest points on the curve $r=\sin 2 \theta$. Then use calculus to find the exact value.
\qquad 79. (a) Investigate the family of curves defined by the polar equations $r=\sin n \theta$, where n is a positive integer. How is the number of loops related to n ?
(b) What happens if the equation in part (a) is replaced by $r=|\sin n \theta| ?$
80. A family of curves is given by the equations $r=1+c \sin n \theta$, where c is a real number and n is a positive integer. How does the graph change as n increases? How does it change as c changes? Illustrate by graphing enough members of the family to support your conclusions.
71. A family of curves has polar equations

$$
r=\frac{1-a \cos \theta}{1+a \cos \theta}
$$

Investigate how the graph changes as the number a changes. In particular, you should identify the transitional values of a for which the basic shape of the curve changes.
82. The astronomer Giovanni Cassini (1625-1712) studied the family of curves with polar equations

$$
r^{4}-2 c^{2} r^{2} \cos 2 \theta+c^{4}-a^{4}=0
$$

where a and c are positive real numbers. These curves are called the ovals of Cassini even though they are oval shaped only for certain values of a and c. (Cassini thought that these curves might represent planetary orbits better than Kepler's ellipses.) Investigate the variety of shapes that these curves may have. In particular, how are a and c related to each other when the curve splits into two parts?
83. Let P be any point (except the origin) on the curve $r=f(\theta)$. If ψ is the angle between the tangent line at P and the radial line $O P$, show that

$$
\tan \psi=\frac{r}{d r / d \theta}
$$

[Hint: Observe that $\psi=\phi-\theta$ in the figure.]

84. (a) Use Exercise 83 to show that the angle between the tangent line and the radial line is $\psi=\pi / 4$ at every point on the curve $r=e^{\theta}$.
(b) Illustrate part (a) by graphing the curve and the tangent lines at the points where $\theta=0$ and $\pi / 2$.
(c) Prove that any polar curve $r=f(\theta)$ with the property that the angle ψ between the radial line and the tangent line is a constant must be of the form $r=C e^{k \theta}$, where C and k are constants.

