$0 \le t \le 10\pi$

FIGURE 18 $r = \sin(8\theta/5)$

In Exercise 55 you are asked to prove analytically what we have discovered from the graphs in Figure 19.

Switching from θ to *t*, we have the equations

 $x = \sin(8t/5) \cos t$

FIGURE 19 Members of the family of limaçons $r = 1 + c \sin \theta$

The remaining parts of Figure 19 show that as *c* becomes negative, the shapes change in reverse order. In fact, these curves are reflections about the horizontal axis of the corresponding curves with positive *c*.

and so we require that $16 n\pi/5$ be an even multiple of π . This will first occur when n = 5. Therefore we will graph the entire curve if we specify that $0 \le \theta \le 10\pi$.

V EXAMPLE 11 Investigate the family of polar curves given by $r = 1 + c \sin \theta$. How does the shape change as *c* changes? (These curves are called **limacons**, after a French

SOLUTION Figure 19 shows computer-drawn graphs for various values of c. For c > 1 there

is a loop that decreases in size as c decreases. When c = 1 the loop disappears and the curve becomes the cardioid that we sketched in Example 7. For *c* between 1 and $\frac{1}{2}$ the cardioid's cusp is smoothed out and becomes a "dimple." When *c* decreases from $\frac{1}{2}$ to 0, the limaçon is shaped like an oval. This oval becomes more circular as $c \rightarrow 0$, and when

and Figure 18 shows the resulting curve. Notice that this rose has 16 loops.

word for snail, because of the shape of the curves for certain values of *c*.)

 $y = \sin(8t/5) \sin t$

10.3 EXERCISES

I-2 Plot the point whose polar coordinates are given. Then find two other pairs of polar coordinates of this point, one with r > 0and one with r < 0.

I. (a) $(2, \pi/3)$	(b) $(1, -3\pi/4)$	(c) $(-1, \pi/2)$
2. (a) $(1, 7\pi/4)$	(b) $(-3, \pi/6)$	(c) (1, −1)

3-4 Plot the point whose polar coordinates are given. Then find the Cartesian coordinates of the point.

(b) $(2, -2\pi/3)$ (c) $(-2, 3\pi/4)$ **3.** (a) $(1, \pi)$

4. (a) $\left(-\sqrt{2}, 5\pi/4\right)$ (b) $(1, 5\pi/2)$ (c) $(2, -7\pi/6)$

5–6 The Cartesian coordinates of a point are given.

- (i) Find polar coordinates (r, θ) of the point, where r > 0 and $0 \leq \theta < 2\pi$.
- (ii) Find polar coordinates (r, θ) of the point, where r < 0 and $0 \leq \theta < 2\pi$.
- (b) $(-1, \sqrt{3})$ **5.** (a) (2, −2)
- **6.** (a) $(3\sqrt{3}, 3)$ (b) (1, −2)

7–12 Sketch the region in the plane consisting of points whose polar coordinates satisfy the given conditions.

7. $1 \le r \le 2$ 8. $r \ge 0$, $\pi/3 \le \theta \le 2\pi/3$ 9. $0 \le r < 4$, $-\pi/2 \le \theta < \pi/6$ 10. $2 < r \le 5$, $3\pi/4 < \theta < 5\pi/4$ 11. 2 < r < 3, $5\pi/3 \le \theta \le 7\pi/3$ 12. $r \ge 1$, $\pi \le \theta \le 2\pi$

- **13.** Find the distance between the points with polar coordinates $(2, \pi/3)$ and $(4, 2\pi/3)$.
- **14.** Find a formula for the distance between the points with polar coordinates (r_1, θ_1) and (r_2, θ_2) .

15–20 Identify the curve by finding a Cartesian equation for the curve.

15. <i>r</i> = 2	16. $r \cos \theta = 1$
17. $r = 3 \sin \theta$	18. $r = 2\sin\theta + 2\cos\theta$
19. $r = \csc \theta$	20. $r = \tan \theta \sec \theta$

21–26 Find a polar equation for the curve represented by the given Cartesian equation.

21. $x = 3$	22. $x^2 + y^2 = 9$
23. $x = -y^2$	24. $x + y = 9$
25. $x^2 + y^2 = 2cx$	26. $xy = 4$

27–28 For each of the described curves, decide if the curve would be more easily given by a polar equation or a Cartesian equation. Then write an equation for the curve.

- **27.** (a) A line through the origin that makes an angle of $\pi/6$ with the positive *x*-axis
 - (b) A vertical line through the point (3, 3)
- 28. (a) A circle with radius 5 and center (2, 3)(b) A circle centered at the origin with radius 4

29–48 Sketch the curve with the given polar equation.

29. $\theta = -\pi/6$	30. $r^2 - 3r + 2 = 0$
31. $r = \sin \theta$	32. $r = -3 \cos \theta$
33. $r = 2(1 - \sin \theta), \ \theta \ge 0$	34. $r = 1 - 3 \cos \theta$
35. $r = \theta, \ \theta \ge 0$	36. $r = \ln \theta, \ \theta \ge 1$
37. $r = 4 \sin 3\theta$	38. $r = \cos 5\theta$
39. $r = 2 \cos 4\theta$	40. $r = 3 \cos 6\theta$
41. $r = 1 - 2 \sin \theta$	42. $r = 2 + \sin \theta$

43. $r^2 = 9 \sin 2\theta$	$44. r^2 = \cos 4\theta$
45. $r = 2\cos(3\theta/2)$	46. $r^2\theta = 1$
47. $r = 1 + 2 \cos 2\theta$	48. $r = 1 + 2\cos(\theta/2)$

49–50 The figure shows the graph of *r* as a function of θ in Cartesian coordinates. Use it to sketch the corresponding polar curve.

- **51.** Show that the polar curve $r = 4 + 2 \sec \theta$ (called a **conchoid**) has the line x = 2 as a vertical asymptote by showing that $\lim_{r \to \pm \infty} x = 2$. Use this fact to help sketch the conchoid.
- **52.** Show that the curve $r = 2 \csc \theta$ (also a conchoid) has the line y = -1 as a horizontal asymptote by showing that $\lim_{r \to \pm \infty} y = -1$. Use this fact to help sketch the conchoid.
- **53.** Show that the curve $r = \sin \theta \tan \theta$ (called a **cissoid of Diocles**) has the line x = 1 as a vertical asymptote. Show also that the curve lies entirely within the vertical strip $0 \le x < 1$. Use these facts to help sketch the cissoid.
- **54.** Sketch the curve $(x^2 + y^2)^3 = 4x^2y^2$.
- **55.** (a) In Example 11 the graphs suggest that the limaçon $r = 1 + c \sin \theta$ has an inner loop when |c| > 1. Prove that this is true, and find the values of θ that correspond to the inner loop.
 - (b) From Figure 19 it appears that the limaçon loses its dimple when $c = \frac{1}{2}$. Prove this.
- **56.** Match the polar equations with the graphs labeled I–VI. Give reasons for your choices. (Don't use a graphing device.)

57–62 Find the slope of the tangent line to the given polar curve at the point specified by the value of θ .

57. $r = 2 \sin \theta$, $\theta = \pi/6$	58. $r = 2 - \sin \theta$, $\theta = \pi/3$
59. $r = 1/\theta, \theta = \pi$	60. $r = \cos(\theta/3), \theta = \pi$
61. $r = \cos 2\theta$, $\theta = \pi/4$	62. $r = 1 + 2\cos\theta$, $\theta = \pi/3$

63–68 Find the points on the given curve where the tangent line is horizontal or vertical.

$\textbf{63.} r = 3\cos\theta$	64. $r = 1 - \sin \theta$
65. $r = 1 + \cos \theta$	66. $r = e^{\theta}$
67. $r = 2 + \sin \theta$	68. $r^2 = \sin 2\theta$

- **69.** Show that the polar equation $r = a \sin \theta + b \cos \theta$, where $ab \neq 0$, represents a circle, and find its center and radius.
- **70.** Show that the curves $r = a \sin \theta$ and $r = a \cos \theta$ intersect at right angles.
- 71–76 Use a graphing device to graph the polar curve. Choose the parameter interval to make sure that you produce the entire curve.
 - **71.** $r = 1 + 2\sin(\theta/2)$ (nephroid of Freeth) **72.** $r = \sqrt{1 - 0.8 \sin^2 \theta}$ (hippopede) **73.** $r = e^{\sin \theta} - 2\cos(4\theta)$ (butterfly curve) **74.** $r = \sin^2(4\theta) + \cos(4\theta)$ **75.** $r = 2 - 5\sin(\theta/6)$
 - **76.** $r = \cos(\theta/2) + \cos(\theta/3)$
- **77.** How are the graphs of $r = 1 + \sin(\theta \pi/6)$ and $r = 1 + \sin(\theta \pi/3)$ related to the graph of $r = 1 + \sin \theta$? In general, how is the graph of $r = f(\theta - \alpha)$ related to the graph of $r = f(\theta)$?
- **78.** Use a graph to estimate the *y*-coordinate of the highest points on the curve $r = \sin 2\theta$. Then use calculus to find the exact value.
- **79.** (a) Investigate the family of curves defined by the polar equations $r = \sin n\theta$, where *n* is a positive integer. How is the number of loops related to *n*?
 - (b) What happens if the equation in part (a) is replaced by $r = |\sin n\theta|$?

- **80.** A family of curves is given by the equations $r = 1 + c \sin n\theta$, where *c* is a real number and *n* is a positive integer. How does the graph change as *n* increases? How does it change as *c* changes? Illustrate by graphing enough members of the family to support your conclusions.
- **81.** A family of curves has polar equations

$$r = \frac{1 - a\cos\theta}{1 + a\cos\theta}$$

Investigate how the graph changes as the number *a* changes. In particular, you should identify the transitional values of *a* for which the basic shape of the curve changes.

82. The astronomer Giovanni Cassini (1625–1712) studied the family of curves with polar equations

$$r^4 - 2c^2r^2\cos 2\theta + c^4 - a^4 = 0$$

where *a* and *c* are positive real numbers. These curves are called the **ovals of Cassini** even though they are oval shaped only for certain values of *a* and *c*. (Cassini thought that these curves might represent planetary orbits better than Kepler's ellipses.) Investigate the variety of shapes that these curves may have. In particular, how are *a* and *c* related to each other when the curve splits into two parts?

83. Let *P* be any point (except the origin) on the curve r = f(θ). If ψ is the angle between the tangent line at *P* and the radial line *OP*, show that

$$\tan \psi = \frac{r}{dr/d\theta}$$

[*Hint:* Observe that $\psi = \phi - \theta$ in the figure.]

- 84. (a) Use Exercise 83 to show that the angle between the tangent line and the radial line is ψ = π/4 at every point on the curve r = e^θ.
- (b) Illustrate part (a) by graphing the curve and the tangent lines at the points where $\theta = 0$ and $\pi/2$.
 - (c) Prove that any polar curve $r = f(\theta)$ with the property that the angle ψ between the radial line and the tangent line is a constant must be of the form $r = Ce^{k\theta}$, where *C* and *k* are constants.